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Cubane {) and its derivatives have been the subject of
numerous investigations ever since Eaton’s synthesis of the
parent compound in 1964 Kinetic measurements indicate that
1is an unusually acidic alkahand that its carbonhydrogen
bond dissociation energy (BDE) is considerably greater than
that for a typical tertiary €H bond4 The thermodynamic
values for these quantities, however, are unknown. Cubane’s
acidity along with the electron affinity of cubyl radical could
be used to derive the homolytic-& BDE via a thermodynamic
cycle (eq 1).

BDE(cubyH) = AH_{cubane)-
IP(H") + EA(cubyl radical) (1)

This bond energy is of special interest since it could be used
in conjunction with our previous results on the radical anion of
cubene to derive a purely experimental value for the heat of
formation of cubené. In this paper we report the formation of
cubyl anion, a rare example of a stable gas phase alkyl anion,
and the first determination of the acidity and-8 BDE of
cubane.

Alkyl anions are difficult to generate in the gas phase
typically, because of their extreme basicity and lack of stability
relative to their radical%. Cubyl anion (GH;~, 1a) was
prepared, nevertheless, by reacting (trimethylsilyl)cub&)e (
with fluoride ion (i.e., the DePuy reactidhip a Finnigan Fourier
transform mass spectrometer (FTMS)The yield of 1a was
poor but the efficiency of the reaction could be improved
considerably by slightly increasing the kinetic energy of the
fluoride ion? This was accomplished by using the sustained
off-resonance irradiation (SORI) technique developed by
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Figure 1. (a) Generation and isolation of {m/z 19) via electron
ionization of Ch. (b) Formation of cubyl anionl@, m/z103); the ions
at m/z91, 161, and 179 presumably correspond @H,(CHs),SiF,
CsH7(CH;),Si~, and ~CHy(CsH7)(CHs)SiF, respectively. (c) Isolation
of cubyl anion.

Jacobson (eqs-24).1° Subsequent isolation dfa (Figure 1)
enabled us to unambiguously explore this ion’s reactivity.
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ACidS, such as KO, (CH;)QNH, CH3CH,;NH,, CH3NH,, and

NHs, protonatela, although the latter reaction is very inefficient.
Ammonia#ds; slowly transfers a deuteron to cubyl anion; it also
induces up to five hydrogen/deuterium exchanges (Figure 2).
The fifth deuterium appears only after a long reaction time
(~15-20 s), and it is this sluggishness which precludes the
observation of the last two H/D exchanges. The acidity of
cubane can be confidently assigned on the basis of these
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Figure 2. Hydrogen/deuterium exchange behavior of cubyl ania) (
upon reaction with ammonids.

observations. In particular, its acidity must be very similar to

Communications to the Editor

the statistically corrected ratio of these two ions, along with a
calibration line derived from compounds with known acidities,
can be used to obtainHi(RH). We employed RSi(Chjs,
where R= CHzCH,, CHs, ¢c-GHs, C,H3, and GHs, as our
standards and then measured the SO /(CgH7)(CHs3)2SiO~
ratio from 2 to derive an apparent acidity of 413 kcal/mol for
cubané-’ This result is in agreement with a preliminary value
of 412 kcal/mol obtained using a flowing afterglow deviée,
but clearly is incorrect. This failing of the kinetic method may
be due to a steric effect or the fact that none of the reference
compounds have a tertiary center as daesiowever, it seems
more likely that rehybridization upon forming the cubyl anion
retards the expulsion dfa and the subsequent loss of cubane
(eq 5a)®P12.18 Thijs leads to an apparent acidity fbmhich is
considerably too weak (i.eAHaciq is too large).

Cubyl anion undergoes electron transfer upon reaction with
SO, mCRCsH4CN, GsFg, or CS (EA = 1.11, 0.67, 0.52, and
0.51 eV, respectively) but not witp-FCsH,CHO, CHNO,,
COS, or 2,4,6-(Ch3CsH.CHO (EA = 0.49, 0.48, 0.46, and
0.44 eV, respectively}1519 These data suggest that the

that of ammonia; hydrogen/deuterium exchange would not take electron affinity of cubyl radical (§47") is 0.50+ 0.1 eV (11.5

place if cubane was less acidic than ammamiiaand NO~
would not be observed ifl was more acidic than NP
Therefore, AHaci1) = 404 £ 3 kcal/mol, which is in accord
with the prediction of Ritchie and Bachrach that cubane is
thermodynamically more acidic than cyclopropafd{ciq =
411.5 kcal/mol(t12 This result is also in good agreement with
our ab initio value of 404.7 kcal/mol (MP2/6-315(d)//MP2/
6-31+G(d) + (0.96)ZPE)!? In contrast, the conjugate base of
cyclooctatetraenedg) is not protonated by any of the acids listed
above (AHacidcyclooctatetraene¥r 386 + 5 kcal/mol)* and
it readily undergoes seven H/D exchanges witlOB

The acidity of cubane was also examined using a kinetic
method developed by DePuy, Bierbaum, and Damréuen
this approach a trimethylsilane (RSi(g) is reacted with
hydroxide ion and a transient alkyl anion is formed (&d/or
CHs™), which subsequently abstracts the hydroxyl proton to
afford (CHs)3SIO™ or R(CH;),SiO~ (eq 5). The logarithm of

RSi(CHy); + OH —» [(CH,),SiOH -R | — (CH,);Si0 + RH (5a)

—» [R(CH;),SiOH «CH; | —» R(CH;),Si0 + CH, (5b)
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+ 2 kcal/mol), which is in good accord with our previous
estimate of 13.2 kcal/mol based upon ab initio calculafians
is similar to the experimental electron affinity of cyclopropyl
radical (8.4 kcal/mol}¢P

The electron affinity of cubyl radical can be combined with
the acidity of cubane in a thermodynamic cycle (eq 1) to derive
the C—H BDE for cubane. This value, 102 4 kcal/mol, is
consistent with the increased s-character in the exocyclic carbon
orbital and previous experimental (kinetic) observations. It also
is in accord with several ab initio calculations including our
recently predicted bond dissociation energy of 104 kcalfa®l.
By combining this BDE with previous measurements on the
radical anion of cubene one can derive a heat of hydrogenation
for cubene of 88t 5 kcal/mol, a heat of formation of 236 5
kcal/mol, a strain energy of 22& 5 kcal/mol, and an olefin
strain energy of 61 5 kcal/mol® This last quantity is within
the experimental uncertainty of the Hrovat and Borden TCSCF/
6-31G(d) prediction of 58.9 kcal/mét.
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